Putting Together and Taking Apart Lists

Real Quick Warm-up: map
Go to the starter file from yesterday.
The helper function from yesterday:
fun web-com-email(email):
split-string-all(email, “@”).get(1l) == “web.com”
end
Run the file then try:
map(web-com-email, emails)

What is map’s contract? map:: (A -> B), List<A> -> List

What is its purpose statement? Takes in a list of type A and a
function, and returns a list of the results of the function for each

5.2.1 Making Lists and Taking Them Apart

So far we’ve seen one way to make a list: by writing [1ist: ..].While useful, writing lists this way

actually hides their true nature. Every list actually has two parts: a first element and the rest of the list. The
rest of the list is itself a list, so it too has two parts...and so on.

Consider the list [List: 1, 2, 3].Its firstelementis 1, and the restofitis [1ist: 2, 3].For this
second list, the first element is 2 and the restis [list: 3].

Take apart this third list.

For the third list, the first element is 3 and the restis [list:],ie., the empty list. In Pyret, we have
another way of writing the empty list: empty.

Lists are an instance of structured data: data with component parts and a well-defined format for the shape of
the parts. Lists are formatted by the first element and the rest of the elements. Tables are somewhat
structured: they are formatted by rows and columns, but the column names aren’t consistent across all tables.
Structured data is valuable in programming because a predictable format (the structure) lets us write
programs based on that structure. What do we mean by that?

Programming languages can (and do!) provide built-in operators for taking apart structured data. These

operators are called accessors. Accessors are defined on the structure of the datatype alone, independent of

the contents of the data. In the case of lists, there are two accessors: Tirst and rest. We use an accessor

by writing an expression, followed by a dot (.), followed by the accessor’s name. As we saw with tables, the

dot means "dig into". Thus:

1 b I —
el =

L2

e2 =
13 =
e3 =

14

[lists 1. 2. 3]
j B %
1.
L2
12.
13.
13.

first
rest
first
rest
first
rest

On your handouts, try to work out the
missing values, then check them in Pyret...

check:

el
e2
e3
12
13
14
end

is
is
is
is
is
is

1

2

3

[list: 2, 3]
[list: 3]
empty

Accessors give a way to take data apart based on their structure (there is another way that we will see

shortly). Is there a way to also build data based on its structure? So far, we have been building lists using the
[list: ...] form,but that doesn’t emphasize the structural constraint that the rest is itself a list. A

structured operator for building lists would clearly show both a first element and a rest that is itself a
list. Operators for building structured data are called constructors.

link(1, [1list: 2, 3]) is link(1, link(2, [list: 3]))
The constructor for lists is called Link. It takes two arguments: a Tirst element, and the list to build on
(the rest part). Here’s an example of using LinK to create a three-element list.

link(1, link(2, 1link(3, empty)))

The Link form creates the same underlying list datum as our previous [1ist: ...] operation, as
confirmed by the following check:

check:
[list: 1, 2, 3] is link(1, link(2, link(3, empty)))
end

Use the Link form to write a four-element list of fruits containing " Llychee", "dates",
"mango",and "durian”.

TRl Y R A e A R it s I, e T e e i ey e R o~ e sy vt MRS e s e ey e S e

This means we actually have two structural features of lists, both of which are important when writing
programs over lists:

1. Lists can be empty or non-empty
2. Non-empty lists have a first element and a rest of the list

Let’s leverage these two structural features to write some programs to process lists!

A function called 1ist-sum that consumes a list of Numbers, and returns the
sum of the elements of the List.

nums = [list: 2, 3, 8, 1]

example:

end

list-sum(nums)
list-sum(nums)
list-sum(nums)
list-sum(nums)
list-sum(nums)
list-sum(nums)
list-sum(nums)

is
is
is
is
is
is
is

14

N NMNMNDNMNDNMNDNDDN
+ + + + + +

3+8 + 1

list-sum([list: 3, 8, 1])

3+ 9

3 + list-sum([1list: 8, 1])

3 + 8 + list-sum([list: 1])

3 +8 + 1 + list-sum([list:])

A function called 1ist-sum that consumes @ et - som (£ 2,9,2,\D)

list of Numbers, and returns the sum of the ”“”“;“D'*'S' ")
. fst:
elements of the List. (9,21

2 vt -swn (L8,3.1)) = WY
num:lst: E&?,ﬁ)
fst: 8
st: 03, 0

3+t sam (L3, 1))_\2

num-ist: £% 0
fst: @
rst: C\}
U

1

num-jst:

fst:

rst:

\ak ~puwn (tm(*‘o)
PR ey]
o |

A function called 1ist-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

k- som (L 2,930
num-lst:[2, %, 3, 1)
fst: 2

rst: [9,%, 1)

2 \ad- s (L8,3,1)) o 1Y

A function called 1ist-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

ab-2uml £ 2, %250
num-lst:[2, %, 3, 1)
fst: 2.

est: [9,2, 1)

2\t - s (L8, 3,1)) o W
num-ist: [€,3,1)
fst: @

Lst: C‘S:‘]

3+ Wt 3em (L3, .\-Dr \2

A function called 1ist-sum that consumes a
list of Numbers, and returns the sum of the

elements of the List. bt [2,9 8, D

ngm-lst:l:z, 1,3 l'_\
fst: 2

rst: [9, 2,)

2 v swn (L8,3.10) o W
numeist: [8,3,1)
fst: 8

st: 03, y
24Vt sem (L3, 1)) \2
num-Ist: [Sl ‘3
fst: @

rst: [\3

\ \ gl 1 \\, \4
3+ \n¥-osw L\ _
AN <

A function called 1ist-sum that k-auinl L 7,9 2.5

consumes a list of Numbers, and rams(2, %, 5, 1)
returns the sum of the elements of .2
the List. st (9,2,
2 \vat-sm (08,3.1)) o 1Y
num-lst: EY,'S,l]
fst: @
st (3,03

2+ it 'NM(‘LB,\-D \2
num-ist: T3\
fst: @

rst: [\3

A \4
\ Jol XN
A A o ERaN LAY
1’ \T\ 1 oUW LY /2. -
|\ .

A function called 1ist-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

Pick off the first value, and add it to the
list-sum computed by the rest of the list.

If the list is empty, the result is zero

ok - wm(Ez 2,2,

fst: Z

rst: [?,Z,l’k
2 st swn (08,3,10) ¢ 1
num-lst: Eg,‘?»,\.)
o g

= (3,00
343X sam (L3, 13)_\2

num-jst:
fst:

rst:

\ak ~puwn (tw(*‘o)

)

fun

end

list-sum(num-1list):
cases (List) num-list:
| empty => @

| link(first, rest) =>
first + list-sum(rest)
end

R*ENMCEZ?) Ap)

fst: 2.

st (9,2, 1)
2k -sun (08,3.1)) o
num:lst: Eg,'?»,\.)
o g

s (3,00
3+t sam (L3, \-D \2

draw-row:

Make a function that takes in a list of Strings containing color values. Draw a row of shapes of the
same type and size, so that the colors appear in the same order that they do in the list.

Here is a helper that you can use to draw a shape given a color:

fun draw-square(c):

squares (50, “outline, c”)
end
color-1list = [list: “red”, “green”, “blue”]

Contract: draw-row :: List<String> -> Image

Purpose Statement: Takes in List of color strings, output Image.

he image should be a row of shapes colored in the order of the
List.

example:
draw-row(color-list) is
beside(draw-square(“red”),
beside(draw-square(“green”),
beside(draw-square(“blue”),

empty-image)))

end

beside :: (

imgl :: Image,
img2 :: Image
)
-> Image

Constructs an image by placing img1 to the left of img2.

Examples:
» beside(rectangle(30, 60, "solid", "orange"),
ellipse(60, 30, "solid", “purple"))

Nested Table Diagram

draw-row([list: “red”, “green”, “blue”]):
first: “red”
rest: [list: “green”, “blue”]

draw-row([list: “green”, “blue™]):
first: “green”
rest: [list: “blue”]

draw-row([list: “blue™])
first: “blue”
rest: [list:]

draw-row([list:])
empty

draw-row([list: ‘red”, “green”, “blue])

beside

-

beside

beside

empty-image

beside

beside

beside

empty-image

draw-cell

Directions: Take in a String. Draw water-img if the String is “0” and if not, draw
grass-img

Confract: draw-cell :: String -> Image o _

Purpose: Input a String. Output water-img if the String is “0” and if not, draw grass-img
Examples:

examples:

draw-cell(‘o’) is water-img
draw-cell(“x’) is grass-img
draw-cell(€1’) is grass-img

end

. Just drawing one square (cell) at a
Function: time, so that we can make a row

S

fun draw-cell(s): with s

if s == ‘0’: water-img

else: grass-img

end

end

Strategy: Developing Functions Over Lists

Leverage the structure of lists and the power of concrete examples to develop list-
processing functions.

» Pick a concrete list with (at least) three elements. Write a sequence of examples for
each of the entire list and each suffix of the list (including the empty list).

» Rewrite each example to express its expected answer in terms of the Tirst and
rest data of its input list. You don’t have to use the first and rest operators
in the new answers, but you should see the Tirst and rest values represented
explicitly in the answer.

e Look for a pattern across the answers in the examples. Use these to develop the
code: write a cases expression, filling in the right side of each => based on your
examples.

This strategy applies to structured data in general, leveraging components of each
datum rather than specifically Tirst and rest as presented so far.

Draw-row

Draw a row from
a list of strings!
The row should
look like the list!

Task 5: Build the BACKGROUND image for a maze (the part of the image that does NOT
change over time). Don't worry about including the widgets or portals. Your BACKGROUND
image should be built using a function and maze-grid - you should not be manually

constructing the maze.

Note: The maze design will be imported as a list of lists, such as the following ("x" is a

wall/grass, "o" is open space/water):

small-maze =
[List: [list: My
[list: oL
[liste txr, uox i
[list: Hoto !
|

While later in the project you will read in such a list of lists from a Google Sheet, for this
task you are only required to build a maze background image from a small example. Use

small-maze for this.

How can you do this? Notice that the list of lists resembles a grid; the maze background
will also be a grid, just made from image icons (with a "grass" icon in place of "x" and a

"water" icon in place of "0").

Strategy: Developing Functions Over Lists

draw-row

Conftract: draw-row ::

List<String> -> Image

Purpose Statement: Takes in a List of Strings and outputs an Image. The Image should
look like water-img and grass-img in the order of the List.

Examples:

11 — [list: “X,,) “X,,) “O,,) “X,,]

draw-row([list: “x”, “x”, “0”, “x”])

draw-row([list:

draw-row([list:
draw-row([list:
draw-row([list:

((X)), ((O)), ((X))])

€€ I
(0

)
, X
€€\
X

e e el

)
)
)

is
is
is

beside(grass-img,
beside(grass-img,
beside(water-img, grass-img))

beside(grass-img,
beside(water-img, grass-img))
beside(water-img, grass-img)

grass-img

empty-image

Strategy: Developing Functions Over Lists

Examples:

11 = [1ist: ﬂ'X)), “X,,, “O,,, “X”]

draw-row([1list: “x”, “x”, “0”, “x”])

draw-row([list:
draw-row([list:
draw-row([list:
draw-row([list:

beside(draw-cell(first), draw-row(rest))

[138})
X

)

€€~
(0]

€€~
(0]

€
J

€
J
€

(83)
X

(83)
X

(83)
X

e e e

N N N S

is
is
is
is

beside(grass-img,

draw-row([list: “x”, “0”, “x”]))
beside(grass-img, draw-row([list: “0”, “x”]))
beside(water-img, draw-row([list: “x”]))
beside(grass-img, draw-row([list:]))
empty-image

Strategy: Developing Functions Over Lists

Leverage the structure of lists and the power of concrete examples to develop list-
processing functions.

» Pick a concrete list with (at least) three elements. Write a sequence of examples for
each of the entire list and each suffix of the list (including the empty list).

» Rewrite each example to express its expected answer in terms of the Tirst and
rest data of its input list. You don’t have to use the first and rest operators
in the new answers, but you should see the Tirst and rest values represented
explicitly in the answer.

e Look for a pattern across the answers in the examples. Use these to develop the
code: write a cases expression, filling in the right side of each => based on your
examples.

This strategy applies to structured data in general, leveraging components of each
datum rather than specifically Tirst and rest as presented so far.

What did we do today? Draw rows of squares
- Drew a bunch of squares
- Draw-row function
- Draw-cell
- Took in a list
- Eventually a maze
- Used lists to make a draw-function

draw-table
Now we want to use the ability to create rows form the lists within small-maze, and draw the whole maze.

For this, we can use the functions we already made, draw-cell and draw-row. In the starter file, I gave
variable names to the rows within small-table, so that we don’t have to write out the contents of each list:

small-maze =
Contract: draw-table :: List<List<String>> -> Image [Lists: [list: 22, 2%, .20% SXtl
[liste 2x%, 0% 2a%, *xtly
[list: =x", 2ot - Ra% _)a'_%,

Purpose Statement: Takes in a List of String Lists, [list: "x", "g" Jyw W

and returns a stack of the draw-rows for each String List. ']
les: maze-1list® = small-maze.get(0)
Examples: maze-listl = small-maze.get(1)
maze-1ist2 = small-maze.get(2)
maze-1list3 = small-maze.get(3)

1. Write examples for each suffix of the list (Hint: we can use above like we did with beside)

small-maze = [list: mloe, mll, ml2, ml3]

examples:

draw-table([list: mlo, mll, ml2, ml3]) is

draw-table([list: mll, ml2, ml3]) is

above(draw-row(mll), above(draw-row(ml2), draw-row(ml3)))
draw-table([list: ml2, ml3]) is above(draw-row(ml2), draw-row(ml3))
draw-table([list: ml3]) is draw-row(ml3)

draw-table([list:]) is empty-image

end

small-maze =

2. Rewrite the examples so that the first, rest structure is easy ¢~ [list: [list: ‘x?,

s b

['List: IIXII n n

[list: w2, 2af,

) [list: M=, Mnl,
3. Use examples to figure out the cases! -]
\ mlO@ = small-maze.get(0)
mll = small-maze.get(1)
ml2 = small-maze.get(2)
ml3 = small-maze.get|(3

1

X ¥

e e e)
oo

1. Write examples for each suffix of the list (Hint: we can use above like we did with beside)
small-maze = [list: mloe, mll, ml2, ml3]

2. Rewrite the examples so that the first, rest structure is easy to see
examples:
draw-table([list: mle, mll, ml2, ml3]) is above(draw-row(mlo),

draw-table([list: mll, ml2, ml3]))

draw-table([list: mll, ml2, ml3]) is above(draw-row(mll), draw-table([list: ml2, ml3]))
draw-table([list: ml2, ml3]) is above(draw-row(ml2), draw-table([list: ml3]))
draw-table([list: ml3]) is above(draw-row(ml3), draw-table([list:]))
draw-table([list:]) is empty-image
end

3. Use examples to figure out the cases!
empty => empty-image, above(draw-row(first), draw-table(rest))

Put this on one of your handouts and make sure I can find it!

What did we learn? Processing Lists on our own (11/20)
- Used recursive code and processed List<List<String>>
- Built grids for our games or other functions
- Learned how to create a maze using? draw-row and draw-table
- Used draw-cell, draw-row, draw-table. Drew boxes, put them beside each other, then stacked them
on top of each other
- Created a table of a different data type
- Can be used for our games for screens of our devices
- Used the ideas of circles of eval to stack and do our examples
- Recursive code
- Recursion and created an image from a table.
- Having empty data types
- Learned how to count to 14 and color squares

Mr. Wolf:

- Arecursive function calls itself on data repeatedly until it gets to an endpoint, after which it begins
to compute the results of those function calls

- On alist, the recursive function calls itself until we get to the empty list.

- When we get to the end, we need some specific value (doesn’t have to be an empty value) so that
we can go back and compute the rest of the steps

First: make the contract and purpose statement, then follow these
steps...

Strategy: Developing Functions Over Lists

Stuff that is due tomorrow (at the end of class):

Design recipe handout: draw-cell
Design recipe handout: draw-row - include examples
Design recipe handout: draw-row - include examples

Nested Flowchart - draw-row
Nested Flowchart - draw table

Tomorrow we are FINALLY getting back to our games, but you can work on your
handouts with any extra time.

