
Putting Together and Taking Apart Lists

Go to the starter file from yesterday.

The helper function from yesterday:

fun web-com-email(email):
split-string-all(email, “@”).get(1) == “web.com”

end

Run the file then try:

map(web-com-email, emails)

What is map’s contract? map:: (A -> B), List<A> -> List

What is its purpose statement? Takes in a list of type A and a
function, and returns a list of the results of the function for each

Real Quick Warm-up: map

On your handouts, try to work out the
missing values, then check them in Pyret…

link(1, [list: 2, 3]) is link(1, link(2, [list: 3]))

A function called list-sum that consumes a list of Numbers, and returns the
sum of the elements of the List.

nums = [list: 2, 3, 8, 1]
example:

list-sum(nums) is 14
list-sum(nums) is 2 + 3 + 8 + 1
list-sum(nums) is 2 + list-sum([list: 3, 8, 1])
list-sum(nums) is 2 + 3 + 9
list-sum(nums) is 2 + 3 + list-sum([list: 8, 1])

 list-sum(nums) is 2 + 3 + 8 + list-sum([list: 1])
list-sum(nums) is 2 + 3 + 8 + 1 + list-sum([list:])

end

A function called list-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

A function called list-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

A function called list-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

A function called list-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

A function called list-sum that
consumes a list of Numbers, and
returns the sum of the elements of
the List.

A function called list-sum that consumes a
list of Numbers, and returns the sum of the
elements of the List.

Pick off the first value, and add it to the
list-sum computed by the rest of the list.

If the list is empty, the result is zero

fun list-sum(num-list):
cases (List) num-list:
| empty => 0
| link(first, rest) =>
first + list-sum(rest)

 end
end

draw-row:
Make a function that takes in a list of Strings containing color values. Draw a row of shapes of the
same type and size, so that the colors appear in the same order that they do in the list.

Here is a helper that you can use to draw a shape given a color:

fun draw-square(c):
squares(50, “outline, c”)

end

color-list = [list: “red”, “green”, “blue”]

Contract: draw-row :: List<String> -> Image

Purpose Statement: Takes in List of color strings, output Image.
he image should be a row of shapes colored in the order of the
List.

example:
draw-row(color-list) is

beside(draw-square(“red”),
beside(draw-square(“green”),

beside(draw-square(“blue”),
empty-image)))

end

Nested Table Diagram

draw-row([list: “red”, “green”, “blue”]):
first: “red”
rest: [list: “green”, “blue”]

draw-row([list: “green”, “blue”]):
first: “green”
rest: [list: “blue”]

draw-row([list: “blue”])
first: “blue”
rest: [list:]

draw-row([list:])
empty

draw-circle(“green”)

beside

draw-circle(“blue”) empty-image

beside

beside

draw-circle(“red”)

first

draw-row([list: ‘red”, “green”, “blue])

draw-row(rest)

rest.first

draw-circle(“green”)

beside

draw-circle(“blue”) empty-image

beside

beside

draw-circle(“red”)

draw-cell

Directions: Take in a String. Draw water-img if the String is “o” and if not, draw
grass-img

Contract: draw-cell :: String -> Image
Purpose: Input a String. Output water-img if the String is “o” and if not, draw grass-img

Examples:
examples:

draw-cell(‘o’) is water-img
draw-cell(‘x’) is grass-img
draw-cell(‘1’) is grass-img

end

Function:

fun draw-cell(s):
if s == ‘o’: water-img
else: grass-img
end

end

Just drawing one square (cell) at a
time, so that we can make a row

with it!

Draw-row

Draw a row from
a list of strings!
The row should
look like the list!

draw-row

Contract: draw-row :: List<String> -> Image

Purpose Statement: Takes in a List of Strings and outputs an Image. The Image should
look like water-img and grass-img in the order of the List.

Examples:

l1 = [list: “x”, “x”, “o”, “x”]

draw-row([list: “x”, “x”, “o”, “x”]) is beside(grass-img,
beside(grass-img,

beside(water-img, grass-img))
draw-row([list: “x”, “o”, “x”]) is beside(grass-img,

beside(water-img, grass-img))
draw-row([list: “o”, “x”]) is beside(water-img, grass-img)
draw-row([list: “x”]) is grass-img
draw-row([list:]) is empty-image

Examples:

l1 = [list: “x”, “x”, “o”, “x”]

draw-row([list: “x”, “x”, “o”, “x”]) is beside(grass-img,
draw-row([list: “x”, “o”, “x”]))

draw-row([list: “x”, “o”, “x”]) is beside(grass-img, draw-row([list: “o”, “x”]))
draw-row([list: “o”, “x”]) is beside(water-img, draw-row([list: “x”]))
draw-row([list: “x”]) is beside(grass-img, draw-row([list:]))
draw-row([list:]) is empty-image

beside(draw-cell(first), draw-row(rest))

What did we do today? Draw rows of squares
- Drew a bunch of squares
- Draw-row function
- Draw-cell
- Took in a list
- Eventually a maze
- Used lists to make a draw-function
-

draw-table

Now we want to use the ability to create rows form the lists within small-maze, and draw the whole maze.

For this, we can use the functions we already made, draw-cell and draw-row. In the starter file, I gave
variable names to the rows within small-table, so that we don’t have to write out the contents of each list:

Contract: draw-table :: List<List<String>> -> Image

Purpose Statement: Takes in a List of String Lists,
and returns a stack of the draw-rows for each String List.

Examples:

1. Write examples for each suffix of the list (Hint: we can use above like we did with beside)

small-maze = [list: ml0, ml1, ml2, ml3]
examples:
draw-table([list: ml0, ml1, ml2, ml3]) is
draw-table([list: ml1, ml2, ml3]) is
above(draw-row(ml1), above(draw-row(ml2), draw-row(ml3)))
draw-table([list: ml2, ml3]) is above(draw-row(ml2), draw-row(ml3))
draw-table([list: ml3]) is draw-row(ml3)
draw-table([list:]) is empty-image
end

2. Rewrite the examples so that the first, rest structure is easy to see

3. Use examples to figure out the cases!

1. Write examples for each suffix of the list (Hint: we can use above like we did with beside)

small-maze = [list: ml0, ml1, ml2, ml3]

2. Rewrite the examples so that the first, rest structure is easy to see
examples:
draw-table([list: ml0, ml1, ml2, ml3]) is above(draw-row(ml0),

draw-table([list: ml1, ml2, ml3]))
draw-table([list: ml1, ml2, ml3]) is above(draw-row(ml1), draw-table([list: ml2, ml3]))
draw-table([list: ml2, ml3]) is above(draw-row(ml2), draw-table([list: ml3]))
draw-table([list: ml3]) is above(draw-row(ml3), draw-table([list:]))
draw-table([list:]) is empty-image
end

3. Use examples to figure out the cases!
empty => empty-image, above(draw-row(first), draw-table(rest))

Put this on one of your handouts and make sure I can find it!

What did we learn? Processing Lists on our own (11/20)
- Used recursive code and processed List<List<String>>
- Built grids for our games or other functions
- Learned how to create a maze using draw-row and draw-table
- Used draw-cell, draw-row, draw-table. Drew boxes, put them beside each other, then stacked them

on top of each other
- Created a table of a different data type
- Can be used for our games for screens of our devices
- Used the ideas of circles of eval to stack and do our examples
- Recursive code
- Recursion and created an image from a table.
- Having empty data types
- Learned how to count to 14 and color squares

Mr. Wolf:
- A recursive function calls itself on data repeatedly until it gets to an endpoint, after which it begins

to compute the results of those function calls
- On a list, the recursive function calls itself until we get to the empty list.
- When we get to the end, we need some specific value (doesn’t have to be an empty value) so that

we can go back and compute the rest of the steps

First: make the contract and purpose statement, then follow these
steps…

Stuff that is due tomorrow (at the end of class):

Design recipe handout: draw-cell
Design recipe handout: draw-row - include examples
Design recipe handout: draw-row - include examples

Nested Flowchart - draw-row
Nested Flowchart - draw table

Tomorrow we are FINALLY getting back to our games, but you can work on your
handouts with any extra time.

